
Python, pip, setuptools, PyPI, oh my!

BV

[2014-09-03 Wed 13:11]

I started to use PyPI to distribute releases of Worch and related Python
packages. This is new territory for me so this topic captures my understand-
ing

1 Package layout

1.1 The setup.py �le

The setup.py �le describes how the package source area is organized. I put
Python modules either at top-level or under python/. In the latter case one
needs to add this keyword argument to the setup() function.

package_dir = {"": "python"},

The rest of this section gives other parts of setup.py which are associated
with an additional �le.

1.2 The requirements.txt �le

Any dependencies are asserted in requirements.txt:

worch == 1.2.1

ups-utils == 0.1

and brought into setup.py with:

install_requires = [l for l in open("requirements.txt").readlines() if l.strip()],

Maybe there is a nicer way?. . . .

1

1.3 The MANIFEST.in �le

Files that are not picked up by "python setup.py sdist can be added to
MANIFEST.in

include requirements.txt

include examples/*.cfg

recursive-include examples *.cfg

Files that should be installed need to be declared to setup() like:

data_files = [('target/path', glob('source/path/*'),]

Here is how to handle a recursive set of data_files so that the directory
structure is preserved:

import os

from glob import glob

setup(...

data_files = [('blah', glob('blah/*'))] + \

[('prefix/path/'+x[0],

map(lambda y: x[0]+'/'+y, x[2])) for x in os.walk.('thedir')]

...)

2 Package production

To make a local package:

1. Check and update the version string in setup.py

2. Maybe git commit and git tag

3. python setup.py sdist

The package is under dist/ and can be installed with pip install

dist/pkg-X.Y.tar.gz.

3 Dependencies

Package dependencies are encoded in to the requirements.txt �le as above
and with explicit equality relations asserted.

2

4 Release

1. hack and commit

2. bump version number in setup.py

3. commit and tag

4. git push && git push --tags

5. python setup.py sdist upload

5 Distribution

Use PyPI. Register for an account and for each new package register it:

$ python setup.py register

To upload:

(check and update version in setup.py)

$ git commit -a -m "...."

$ git tag X.Y.Z

$ git push --tags

$ python setup.py sdist upload

6 Installation

Once in PyPI, installation is trivial.

$ virtualenv venv

$ source venv/bin/activate

$ pip install the-package

7 Development

To set up for development, follow normal installation as above and then:

$ pip uninstall -y the-package

$ git clone git@github.com:brettviren/the-package.git

$ cd the-package

3

$ python setup.py sdist

$ pip install dist/the-package-X.Y.Z.tar.gz

(hack)

$ pip uninstall -y the-package

$ pip install dist/the-package-X.Y.Z.tar.gz

8 Managing all this

A system to manage releases would be helpful.

8.1 Problems

While incredibly nice from the point of view of the installer/user, this orga-
nization comes at a price on the developer. Some issues:

8.1.1 Tight coupling of dependency versions.

The Internet tells me that I should put equality assertions in the requirements.txt
�le. When a bug is found and �xed in a low-level package its version number
is bumped and a new release is made. For an installation of a high-level pack-
age to gain this �x the low-level version number in the requirements.txt

�le needs to be updated and a new high-level package release made.

8.1.2 Developing on the stack

Setting up and maintaining a development environment requires getting sev-
eral repositories in place. Hacking on their code and then installing them is
error prone if done manually. A global "make install" type thing is needed
to do all the sdist/pip dancing.

8.1.3 Release management

Making a release requires some actions to be coordinated:

� change version in setup.py

� test locally

� git commit and git tag with the version

� git push and upload to PyPI

4

� test from PyPi

Ways to tweak the version string in setup.py after a release to make it
be di�erent and indicate one is in a development phase.

8.1.4 Status

Some way to know the status of all the repositories:

� are they dirty with uncommitted/modi�ed �les?

� are they "o� tag" (setup.py version says one thing, but not git tag

9 Best practices:

http://pytest.org/latest/goodpractises.html use virtualenv and pip,
look into tox

http://dcreager.net/2010/02/10/setuptools-git-version-numbers/ set
version from git. Use setup.cfg �le in dev branch to tack on
dev-YYYYMMDD to version string, but do better. Use get describe

--tags --match "[0-9]*\.[0-9]* to generate version number based
on the last tag

10 UI

I want some groovy tool where I can automate some of this stu�. It might
look a bit like Google repo in parts. I want to use it like:

<cli> status --cloned

--> list cloned repositories

<cli> status --available

--> list available repositories

<cli> repo add <name> <url> [dep1 ...]

--> make a repository available

<cli> project add <name> [repo1 ...]

--> add a project with zero or more repositories

<cli> project list

--> list repositories in project

5

http://pytest.org/latest/goodpractises.html
http://dcreager.net/2010/02/10/setuptools-git-version-numbers/

<cli> project clone

--> clone repositories in project

<cli> project versions

--> show version of each repository as per setup.py and git-describe

...

It needs a name. . . .

6

	Package layout
	The setup.py file
	The requirements.txt file
	The MANIFEST.in file

	Package production
	Dependencies
	Release
	Distribution
	Installation
	Development
	Managing all this
	Problems
	Tight coupling of dependency versions.
	Developing on the stack
	Release management
	Status

	Best practices:
	UI

